
Including events in DynRisk models

There are essentially four main categories of events:

• “Send data” events

• “Receive data” events

• “Send and receive data” events

• “Trigger action” events

A “Send data” event adds all the input values it gets from its predecessors, 
and sends this sum to its target application. Nothing (i.e., the number zero) 
is passed on to its successors.

A “Receive data” event sends a request for a certain result (a single real 
number) to its target application and passes this result on to its successors.

A “Send and receive data” event adds all the input values it gets from its 
predecessors, and sends this sum together with a request for a certain 
result (a single real number) to its target application and passes this result 
on to its successors. The received result is typically some function of the 
input sum.

A “Trigger action” event simply asks its target application to carry out a 
certain action, e.g., recalculate a spreadsheet. Nothing (i.e., the number 
zero) is passed on to its successors.

When you include events in a model, a good way to start is to find out which
of the above categories the different events belong to, and in which order 
their respective messages should be sent.

To illustrate this, we consider a simple example. Suppose you want your 
model to feed random numbers into a certain cell in a spreadsheet. For each
such number, you want the spreadsheet to be recalculated. Finally after 
each recalculation, you want to transfer the value of a specific cell back to 
DynRisk.

As a “random number generator” we use a node which we call “X”. The 
number we get back from the spreadsheet, will be passed on to a node 
called “Y”.

We observe that there are three different messages we need to send to the 
spreadsheet: 



• “Send X”

• “Recalculate”

• “Receive Y”

[If the spreadsheet is configured to do automatic recalculation, we could of 
course skip the second message, but for the purpose of the argument, we 
assume that this is not the case here. Indeed, in cases where you feed many 
values into a large complex spreadsheet, you may save a lot of time by 
switching off automatic recalculation, and then send a recalculate message 
after the last number has been transferred.]

To accomplish this, we will use three events, named “Send X”, “Recalculate”
and “Receive Y” respectively. Together with the two nodes, “X” and “Y”, we 
then have a model with five objects.

Now, to get correct results, it is obvious that the three messages need to be 
sent in the following order: “Send X”, “Recalculate”, “Receive Y”. Moreover,
before we can send the value of “X”, we need to calculate this value, and 
before we can calculate “Y”, we need to receive this value from the 
spreadsheet.

When DynRisk calculates a model, the model objects are always calculated 
in an order which respects the directions of the edges. If there is a directed 
path from one object to another, then the first object will always be 
calculated before the second.

This means that to get correct results in our case, we need to add edges to 
the model such that we get a directed path starting at “X”, passing through 
“Send X”, “Recalculate” and “Receive Y” in that order, and ending at “Y”.

Considering the categories of the three events, we see that “Send X” is a 
“Send data” event, “Recalculate” is a “Trigger action” event, and “Receive 
Y” is a “Receive data” event. This implies that we have the following data 
flow through our model:

• “X” -> “Send X” : The value of “X”

• “Send X” -> “Recalculate” : 0

• “Recalculate” -> “Receive Y” : 0



• “Receive Y” -> “Y” : The value of “Y”

We notice that the values passed along the two intermediate edges, are just 
dummy values. They are not used at all in the calculations. We still need 
these edges to ensure that everything happens in the right order.

Finally, note that we cannot skip “Y”. Why? Because DynRisk does not allow 
events to be stored on file. Thus, we have to pass the value over to a node. 

In fact, if we skipped “Y” in the diagram, and then tried to run a simulation 
on the model, then only “X” would be simulated. No messages will ever be 
sent to the spreadsheet!

In order to determine which objects that need to be calculated during a 
simulation, DynRisk starts out with the objects which are selected to be 
stored on file. If “Y” is deleted from the model, only “X” could be stored. 
DynRisk then continues by following the edges backwards through the 
model, and includes all objects found along the way. In our case, “X” has no 
predecessors. Thus, without “Y”, only “X” will be included in the simulation.


